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Abstract
Locks are the most widely used synchronization mechanism
for threads. It is well-known that naive use of locks can eas-
ily lead to program failures through deadlock. Such dead-
lock is usually avoided through careful lock ordering. We
argue that this approach is incompatible with several increas-
ingly important programming practices that rely on libraries
invoking (“calling-back”) essentially unknown client code.
Template-based generic programming in C++ is probably
the most extreme in its use of call-backs, in that often al-
most every operator used in a generic function is potentially
defined by client code.

Template functions are essential to C++. Much of the
standard library consists of template functions and classes.
We expect the same to be increasingly true for libraries
designed for concurrency that support synchronization. We
argue that if locks are used for synchronization in such code
we have no reliable methodology for avoiding deadlock; we
need an alternate synchronization mechanism. We argue that
transactional memory can extract us from this predicament.

Unlike much of the debate surrounding transactional
memory, we do not start with a focus on performance. We
argue instead that transactional memory provides a desper-
ately needed programmability improvement, which we have
learned how to implement with sufficient performance to
make it viable. We believe this sheds new light on the bene-
fits of, and requirements for, transactional memory.
Categories and Subject Descriptors: D.1.3 [Concurrent Pro-
gramming]: Parallel Programming
General Terms: Algorithms, Design
Keywords: Transactional Memory, Generic Programming

1. Introduction
Locks (or mutexes) are the most widely used mechanism
to synchronize shared-memory access in multithreaded pro-
grams in today’s software [15]. A program that uses more
than one lock must generally follow a program-defined se-
quential locking order for the locks that are acquired by the
program, otherwise a deadlock can occur as shown in Fig-
ure 1.

Thread 1                Thread 2 
 
lock(m1); 
                        lock(m2); 
 
lock(m2); 
                        lock(m1); 

tim
e 

Deadlock 

Figure 1. Deadlock Caused by Violation of Sequential
Locking Order.

The deadlock shown in Figure 1 occurs because Thread 1
orders its lock acquisitions in the sequence of (m1, m2),
while Thread 2 orders the same lock acquisitions in the
sequence of (m2, m1). Thread 1 acquires m1 while Thread
2 acquires m2 and then each thread attempts to acquire the
other lock without releasing the first one. Each thread will
wait indefinitely for the other thread to release the lock it
needs to make forward progress.

In simple cases, this typically has an easy solution. It may
be possible to arrange Thread 2 such that it acquires m1 and
m2 in the opposite order, enforcing consistent lock ordering.
If m1 is acquired in a separate nested function call, it may be
possible to turn m1 into a reentrant lock (recursive_mutex
in C++11). It can then be acquired not only in the nested call
after m2, but also preemptively before acquiring m2.

2. The problem with callbacks
Suppose now that instead of Thread 2 explicitly acquiring
locks in order (m2, m1), it calls a library function f(g) as
in Figure 2, where f first acquires m2, and then calls g, which
acquires m1 with m2 still held. This is fundamentally the
same situation, with the same resulting deadlock as before.

If we assume that f is implemented in a library, and the
function passed as g is provided by the main application,
there is no longer a clear methodology for avoiding the
problem. The author of f is unlikely to even be aware of
the lock m1, and is thus no longer in a position to ensure lock
ordering. The only likely way to avoid deadlock is to ensure
that no locks are acquired by the library routine f and held



Thread 1              Thread 2 
 
lock(m1);             enter f(g); 
                      lock(m2)  
                          
lock(m2); 
                      g(); // locks m1 

tim
e 

Deadlock 

Figure 2. Deadlock with Generic Function.

during the callback. Yet, this is often difficult and unnatural
in practice, as we explore further in Section 4.

This problem has been encountered many times before.
The observer pattern is a common use of callbacks and ap-
pears as the poster child for the difficulty of thread program-
ming in [20], for precisely this reason.1 The Linux/GNU
dl_iterate_phdr function provides a callback based in-
terface acquiring locks internally, and web-based accounts
of resulting deadlocks are easy to find.

Another fairly common use of what amounts to a callback
interface is reference counting with synchronous destruction
of objects, for example by using C++11’s shared_ptr facil-
ity. An assignment to a reference counted pointer may lead
to invocation of the destructor for the previously referenced
object, which often leads to further reference count decre-
ments, and further destructor invocations, possibly of objects
that were indirectly referenced by the original pointer value,
but whose implementation is not understood by the author of
the code containing the pointer assignment. As is discussed
in [3, 4], this again leads to deadlocks, among other issues.2

3. Generic programming: call-backs
everywhere

From a software engineering perspective, software reusabil-
ity and maintainability are key characteristics for success-
ful large scale software development [9, 12]. Many modern
programming languages, like Java, Scala, and Python, sup-
port software reusability and maintainability by providing
the programmer with various ways to write portions of their
software in a generic fashion [2, 19, 23]. Once the generic
outline of the algorithm is captured it can then be used gen-
erally for various data types each with type-specialized func-
tionality.

In C++, template functions are the most common way to
write generic algorithms [1, 26]. A template function usually
captures the portions of an algorithm necessary for all data
types, or a range of data types, while omitting details that
are specific to any particular data type. An example of such
a template function is shown in Figure 3, where the greatest
of three variables of type T is returned.

1 Lee even points out that transactions provide a solution, but seems to
downplay their impact [20].
2 A very similar problem in early Java implementations is described in [27],
where it is misattributed to the Java specification.

template <typename T> 
T const & max3(T const &a1, T const &a2, 
               T const &a3)  
{ 
  T max(a1); 
  if (a2 > max) max = a2; 
  if (a3 > max) max = a3; 
  return max; 
} 

Figure 3. A Template Function that Returns the Maximum
Value of Three Variables.

Implicit in Figure 3’s code are calls to operator>() for
type T invoked, for example, by the expression a2 > max.
By embedding a call to operator>() in this fashion, the
max3() template function abstracts away the specific im-
plementation details associated with operator>() for any
particular type, enabling the programmer to independently
specify what it means for a variable of such type to be less
than another variable of the same type. Effectively the call to
the > operator becomes a callback to client code. The author
of max3() has no idea whether it will invoke a built-in op-
erator or user-defined function, or, in the latter case, which
locks it might acquire. It is quite likely that when max3()

was written, the relevant implementation of operator>()
did not yet exist.

What makes generic programming different from our
prior examples is that many or most of the function calls
and operator invocations depend on type parameters, and
are thus effectively callbacks. That includes not only the
operator>() uses, but also the assignments (operator=()),
and the constructor used to initialize the max variable. It also
includes the syntactically invisible destructor for max, and
even possibly the syntactically invisible construction and
destruction of expression temporaries. These constructors
and destructors are likely to acquire locks if, for example,
the constructor takes possession of resources from a shared
free list that are returned by the destructor.

In order to enforce a lock ordering, the author of any
generic function acquiring locks (or that could possibly be
called while holding a lock) would have to reason about
the locks that could potentially be acquired by any of these
operators, which appears thoroughly intractable.

In the next section we illustrate this more concretely with
a more complete example.

4. C++ template and locks example
Deadlocks are generally “programming-in-the-large” prob-
lems. For small applications that can be easily and fully
understood by a single programmer, it is usually possible
to avoid deadlocks, perhaps at the cost of convoluted code.
Nonetheless, to fully appreciate the issue, we feel it is useful
to present a concrete example. Here we do so.



template <typename T>  
class concurrent_sack 
{ 
public: 
   ... 
   void set(T const &obj) { 
      lock_guard<mutex> _(m_); 
      item_ = obj; 
   } 
   T const & get() const {  
      lock_guard<mutex> _(m_); 
      return item_; 
   } 
private: 
   T item_; 
   mutex m_; 
}; 
 
Figure 4. A Concurrent Sack that Holds One Item.

Figure 4 presents a concurrent sack data structure,
which is designed to illustrate a concurrent container. It can
hold a single element. Multiple threads can set and retrieve
that element without synchronization in the client. Thus ac-
cesses are explicitly protected by a lock. This is done us-
ing the C++11 standard lock guard class, whose construc-
tor invokes the lock() function on the provided object, and
whose destructor invokes the corresponding unlock() func-
tion. This is C++’s standard mechanism for exception-safe
lock acquisition [18].

Figure 5 defines a class T with an explicitly defined as-
signment operator, which occasionally logs messages to a
log object L. The log class provides a member function to
add an entry to the log. As would be expected, it is safe for
use from multiple threads. It also provides explicit lock()
and unlock() member functions, which can be used to en-
sure that a thread that needs to log consecutive messages
can do so. This API design is similar to that used by POSIX
stdio.

Now assume that one thread (Thread 2) needs to generate
two contiguous log messages. One of the messages relies
on a value extracted from a concurrent sack<T>. Thus,
thread 2 explicitly acquires first the lock on L, and then
the lock on the concurrent sack. If it runs concurrently
with a set operation on the same concurrent sack<T>,
which happens to generate a log entry, caused by a failed
check invariants call within class T’s operator=(), the
program will deadlock as demonstrated in Figure 6.

4.1 Why is this problem so difficult?
The generic programming deadlock scenario shown in Fig-
ure 6 is challenging to address because it is neither the fault
of the generic library writer who wrote concurrent sack

class log { 
public: 
   ... 
   void add(string const &s) { 
      lock_guard<recursive_mutex> _(m_); 
      l_ += s; 
   } 
   void lock() { m_.lock(); } 
   void unlock() { m_.unlock(); } 
private: 
   recursive_mutex m_; 
   string l_; 
} L; 
 
class T { 
public: 
   ... 
   T& operator=(T const &rhs) { 
      if (!check_invariants(rhs)) 
      {  L.add(“T  invariant  error”);  } 
   } 
   bool check_invariants(T const& rhs)  
   { return /* type-specific check */; } 
   string  to_str()  const  {  return  “...”;  } 
}; 

Figure 5. A Reentrant Safe Log Class and an Example
Class T That Uses It.

Thread 1 
 
 
sack.set(T()); 

Thread 2 
 
lock_guard<log> _(L); 
 
L.add(sack.get().to_str()); 
L.add(“...”); 
 

tim
e 

// Concurrent sack shared across multiple threads 
concurrent_sack<T> sack; 

Acquires sack::m_ 

Tries to acquire 
L.m_ if T::operator=() 
!check_invariants() 

Acquires L.m_ 

Tries to acquire sack::m_ 

Figure 6. A Deadlock Using the Concurrent Sack with the
Log Class.

nor the end programmer who wrote the T and log class. In
both cases, neither programmer violated any known locking
order and neither can be expected to properly fix the problem
(at least, not by using locks).

The generic library writer cannot address the problem,
because she has no way of knowing the deadlock will arise
or how it will arise. The main program developer, on the
other hand, can identify the deadlock if she has explicit



knowledge of the implementation details used to implement
concurrent sack. 3 Yet, even with such implementation
knowledge, the specific details of the generic algorithm can
(and should be allowed to) freely change without notifying
the end-user, as long as the interface and functionality re-
main the same. Because of this, any attempt by the main pro-
gram developer to permanently fix the problem by restruc-
turing her software to align with the structure of the generic
algorithm may be broken as soon the generic algorithm is
updated.

To worsen matters, Figure 6’s deadlock is likely to re-
main dormant in normal executions. That is, the dead-
lock will not occur in those executions where class T does
not violate its invariants by always returning true for
check invariants(). This means that this deadlock has
a lower probability of occurring because its dynamic state
requirements might be rarely exercised when compared
to other deadlocks that occur regardless of the program’s
dynamic state, such as the deadlock shown in Figure 1.
Without reliable bug reproduction, fixing such bugs can be
challenging and verifying such fixes are correct even more
so [11, 24].

5. C++ template and transactions example
One of the core tenets of transactional memory is the
promise to avoid deadlock [13]. In this section, we illus-
trate the importance of that promise by using transactions
as a replacement for locks to synchronize the programming
example we outlined in Section 4. With this approach, we
are able to avoid the deadlock problem we previously en-
countered.

template <typename T>  
class concurrent_sack 
{ 
public: 
   ... 
   void set(T const &obj) { 
      __transaction { item_ = obj; } 
   } 
   T const & get() const {  
      __transaction { return item_; } 
   } 
private: 
   T item_; 
}; 
 

Figure 7. Transaction-Revised Concurrent Sack.

Figure 7 shows the transaction-revised concurrent sack

template class. The only change that we made to this class is
that it now synchronizes its set() and get() methods with

3 Although such knowledge fundamentally challenges a key motivation of
generic programming; that is, abstraction of implementation details.

transactions instead of lock guards [18]. All other imple-
mentation details of concurrent sack are identical to the
original.

class log { 
public: 
   ... 
   void add(string const &s) { 
      __transaction { l_ += s; } 
   } 
private: 
   string l_; 
} L; 
 
class T { 
public: 
   ... 
   T& operator=(T const &rhs) { 
      if (!check_invariants(rhs)) 
      {  L.add(“T  invariant  error”);  } 
   } 
   bool check_invariants(T const& rhs)  
   { return /* type-specific check */; } 
   string  to_str()  const  {  return  “...”;  } 
}; 
 

Figure 8. Transaction-Revised Reentrant Safe Log Class
and an Example Class T That Uses It.

We also updated the log class to use transactions, rather
than locks, as shown in Figure 8. The updated log class uses
a transaction to synchronize access to its add() method,
which internally writes to L’s shared string, l . We have
included the T class in Figure 8 for completeness, but it
remains unchanged from the original.

Thread 1 
 
 
sack.set(T()); 

Thread 2 
 
__transaction { 
 
 
  L.add(sack.get().to_str()); 
  L.add(“...”); 
} 

tim
e 

// Concurrent sack shared across multiple threads 
concurrent_sack<T> sack; 

Begins sack transaction 

Begins L transaction  
if T::operator=() 
!check_invariants() 

Begins local transaction 

Begins sack transaction,  
then L transaction 

Figure 9. A Deadlock-Free Execution Using the
Transaction-Revised Concurrent Sack with the Transaction-
Revised Log Class.

Let us now consider the identical program execution that
was previously described in Section 4. This time, let us use



the new transaction-revised classes as shown in Figures 7
and 8. As before, a thread (Thread 2) needs to generate two
contiguous log messages, one of which relies on a value ex-
tracted from concurrent sack<T>. Because these opera-
tions must be placed in a consecutive sequence in L’s string
l , thread 2 must synchronize l for the entire operation.
Thread 2 achieves this by placing both add() calls within
a local transaction as shown in Figure 9. This local transac-
tions ensures that the memory modified across both add()

calls remains isolated for duration of the entire local transac-
tion. When the local transaction commits, the resulting state
is seen by other threads a single atomic event.

When thread 1 performs its sack.set() operation it be-
gins the transaction embedded within the set() method.
When both threads 1 and 2 execute in the order shown in
Figure 9, their respective transactions will conflict due to
overlapped access to sack’s item . Depending on the out-
come of the check invariants() method from class T,
they may also conflict on their access to L’s l . In either
case, the transactional conflicts will not result in deadlock.
At worst, one transaction will be aborted and restarted; at
best, one transaction will be momentarily stalled while the
other transaction commits. This example not only demon-
strates the power of transactions to overcome the deadlock
issue we demonstrated in Section 4, but it also shows that a
transactional solution can result in fewer lines of code and,
we believe, is easier to reason about than the lock-based ex-
ample, resulting in more maintainable software.

6. Why transactions fit for generic
programming

Generic programming generally aims to express an idea ab-
stractly so it can be used for many different purposes [1].
When locks are used with generic programming, some de-
gree of the locks’ specificity is leaked into the abstract idea,
making it less abstract and introducing the ordering con-
straints we discussed in Section 4.

Transactions, on the other hand, more naturally align with
generic programming because they are a higher order ab-
straction than locks. Transaction only demarcate the section
of the code where shared-memory accesses must be synchro-
nized. Unlike locks, they place no ordering constraints (i.e.,
lock ordering) on the program.

Transactions also do not explicitly specify the way in
which concurrency will be achieved, be it through a hard-
ware, software, or hybrid TM [7, 14, 25]. By abstracting
away such details, the underlying TM system that is used can
be changed, potentially at run-time [29], without changing
the generic program’s algorithm. This widens the space in
which the original generic program can be used because dif-
ferent environments have different concurrency constraints,
such as transactions that execute locally on a single mul-
ticore machine versus transactions that execute over a dis-
tributed network [6, 16, 21].

Furthermore, we believe that with the arrival of real hard-
ware transactional memory support in both IBM’s Blue
Gene/Q and Intel’s Haswell processors [16, 17, 22], many
of the early concerns about transactional performance [5]
are likely to be, at the very least, partially addressed. The
early results of Wang et al. on IBM’s Blue Gene/Q proces-
sor demonstrate such a result and have begun to shed a much
needed light on the performance viability of transactional
memory in real hardware [28].

7. Conclusion
Locks are a poor match for generic programming. The need
to acquire locks in the right order is at fundamental odds with
the desire to write truly general code that does not depend
on implementation details of the argument type. Though
the problem is fundamentally similar to previously encoun-
tered issues with callbacks and locking, generic program-
ming makes it far more pervasive and unmanageable.

We illustrated the pitfalls of such approaches when used
with C++ template-based programming, which is perhaps
the most common form of generic software. C++ templates
amplify the issues, since it can be quite difficult to even iden-
tify the sites of potential callbacks, especially of construc-
tor and destructor calls for compiler-introduced temporaries.
But the fundamental problem is not specific to C++ tem-
plates. Rather, it impacts the entire generic programming
ecosystem. Any generic code that invokes ( “calls-back” )
arbitrary client-side code may result in deadlock.

Given the abundant use of C++ templates in the C++
Standard Template Library [18], the recent addition of thread
support directly into C++11, and the increasing combination
of the two, we believe it is imperative that an alternative solu-
tion to locks be found for multithreaded C++ template code.
We showed that transactional memory is a viable alternative,
and we believe it is the most practical one.

Although the issues with locks and callbacks have been
previously recognized, we believe their impact has been
understated, and the interactions with generic programming
have not been highlighted. Prior examples of problems cases
were much narrower than we believe the problem actually is.

This discussion sidesteps the usual arguments about
transactional memory (cf. [5, 8]) because it is rooted in
correctness, not performance. Our reasoning applies, only
more so, if threads are used as a structuring mechanism on
a uniprocessor. It is perhaps strongest in cases in which syn-
chronization performance is not an issue because there is
only infrequent use of shared data that must be protected.

Since our argument is not based on performance, it ap-
plies even to “transactions” implemented as a a single global
lock. However transactional memory promises to support
this deadlock-free programming discipline while preserving
application scalability on multicore machines, and poten-
tially, with the recent announcements of hardware transac-



tional memory [16, 17, 22], while preserving, or even en-
hancing, single-core application performance.

As has been previously observed [10, 30], we can start to
obtain the benefits of transactional memory without whole-
sale conversion of existing code. For example, existing locks
acquired only by “leaf” functions that do not hold the lock
while calling unknown code cannot introduce deadlock.
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